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Abstract

Cystic fibrosis (CF) lung infections caused by members of the Burkholderia cepacia com-

plex, such as Burkholderia multivorans, are associated with high rates of mortality and mor-

bidity. We performed a population genomics study of 111 B. multivorans sputum isolates

from one CF patient through three stages of infection including an early incident isolate,

deep sampling of a one-year period of chronic infection occurring weeks before a lung trans-

plant, and deep sampling of a post-transplant infection. We reconstructed the evolutionary

history of the population and used a lineage-controlled genome-wide association study

(GWAS) approach to identify genetic variants associated with antibiotic resistance. We

found the incident isolate was basally related to the rest of the strains and more susceptible

to antibiotics from three classes (β-lactams, aminoglycosides, quinolones). The chronic

infection isolates diversified into multiple, distinct genetic lineages and showed reduced anti-

microbial susceptibility to the same antibiotics. The post-transplant reinfection isolates

derived from the same source as the incident isolate and were genetically distinct from the

chronic isolates. They also had a level of susceptibility in between that of the incident and

chronic isolates. We identified numerous examples of potential parallel pathoadaptation, in

which multiple mutations were found in the same locus or even codon. The set of parallel

pathoadaptive loci was enriched for functions associated with virulence and resistance. Our

GWAS analysis identified statistical associations between a polymorphism in the ampD

locus with resistance to β-lactams, and polymorphisms in an araC transcriptional regulator

and an outer membrane porin with resistance to both aminoglycosides and quinolones.

Additionally, these three loci were independently mutated four, three and two times,
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respectively, providing further support for parallel pathoadaptation. Finally, we identified a

minimum of 14 recombination events, and observed that loci carrying putative parallel

pathoadaptations and polymorphisms statistically associated with β-lactam resistance were

over-represented in these recombinogenic regions.

Author summary

Cystic fibrosis (CF) is the most common lethal genetic disorder affecting individuals of

European descent. Most CF patients die at a young age due to chronic lung infections.

Among the organisms involved in these infections are bacteria from the Burkholderia
cepacia complex (BCC), which are strongly associated with poor clinical prognosis. This

study examines how the most prevalent BCC species among CF patients, B.multivorans,
evolves within a single CF patient by studying the first B.multivorans isolate recovered

from the patient, one hundred isolates recovered over a one year period during the

chronic infection phase, and an additional ten isolates recovered after the reinfection of

the transplanted lungs. We found that B.multivorans diversify phenotypically and geneti-

cally within the CF lung over the course of the infection, and evolves into a complex popu-

lation during the chronic infection phase. We found that isolates collected from the post-

transplant reinfection were more closely related to descendants of the original isolate

rather than those recovered in the chronic infection. We identify genetic variants statisti-

cally associated with resistance to the antibiotics, and showed that some of these variants

were found in regions that show patterns of recombination (genetic exchange) between

strains. We also found that genes which were mutated multiple times during overall infec-

tion were more likely to be found in regions showing signals consistent with recombina-

tion. The presence of multiple independent mutations in a gene is a very strong signal that

the gene helps bacteria adapt to their environment. Overall, this study provides insight

into how pathogens adapt to the host during long-term infections, specific genes associ-

ated with antibiotic resistance, and the origin of new and recurrent infections.

Introduction

The Burkholderia cepacia complex (BCC) describes a highly diverse group of at least 20 closely

related species within the genus Burkholderia that can cause serious opportunistic infections in

humans [1, 2]. Individuals with the fatal genetic disease cystic fibrosis (CF) are particularly sus-

ceptible to chronic BCC infections, which are commonly associated with rapid decline in lung

function, high rates of mortality and poor post-transplant outcome [3, 4]. Of the BCC species,

Burkholderia multivorans and Burkholderia cenocepacia account for 85–97% of all BCC found

in CF patients [5]; however, B.multivorans infections have surpassed B. cenocepacia in preva-

lence over the past decade [6]. Many BCC that are CF-associated are intrinsically virulent and

antibiotic resistant, and strict infection control practices are required since these bacteria can

be transmitted between patients [7–10]. Despite a wealth of knowledge describing the molecu-

lar basis of these pathogenic properties and their evolution in strains of the well-studied B. cen-
ocepacia, little is known about the factors that govern these attributes in B.multivorans [9].

Dissecting the molecular basis of complex adaptive traits in bacterial pathogens, such as

antimicrobial resistance, can be difficult since a single phenotype may be influenced by a large

number of loci that interact with each other as well as their environment. Resistance in the
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BCC is associated with alterations to outer membrane permeability, the expression of multi-

drug efflux pumps and β-lactamases, and diversification of antimicrobial targets [11]. Conse-

quently, methods that focus on identifying polymorphisms in single genes with large effects

may miss the majority of loci that modulate phenotypes in more subtle ways. The development

of genome-wide association studies (GWAS) has expanded our ability to identify loci of small

effect size that have been associated with numerous diseases and other related phenotypes of

interest in humans [12, 13]. In contrast, the application of GWAS to analyze bacterial behav-

iors has been slower to gain traction for a number of inter-related reasons: 1) clonal reproduc-

tion of microbes leads to confounding associations due to common ancestry, often referred to

as population structure; 2) recombination in bacteria, which is more analogous to gene con-

version than eukaryotic recombination, occurs at variable rates among different species and is

not linked to reproduction; 3) the unpredictable nature of recombination results in the erratic

breakdown of linkage disequilibrium between selected sites and distal neutral sites; and 4)

selection can be extremely strong, resulting in the relatively rapid fixation of not only a selected

allele, but entire genomes due to the linkage disequilibrium [14, 15].

Despite the challenges inherent in bacterial GWAS, several approaches have recently been

proposed. These methods include using cluster membership [16–18], phylogenetic history [15,

19, 20], or lineage effects [21] to differentiate mutations leading to a phenotypic outcome from

mutations related to the genetic background of the bacterial population. While these methods

hold tremendous promise for identifying genetic variation underlying bacterial phenotypes of

interest, they generally focus on cross sectional sampling of diverse isolates and populations.

Their power has not been established for the fine-scale analysis of individual bacterial popula-

tions evolving over short time scales, with strong positive selection and restricted recombina-

tion [14, 22]. The application of fine-scale evolutionary analysis to bacterial populations is

especially important in the context of clinically significant pathogen infections, where evolu-

tion is associated with adaptation to the host environment and antimicrobial treatment [23].

In this study, we take a fine-scale approach to microbial GWAS to examine the genetic

basis of antimicrobial resistance within a B.multivorans population that had been sampled

longitudinally from a single patient over a ten-year period. We characterized the genomic

diversity in this population and assessed associations between all genetic variants and multiple

antibiotic resistance phenotypes. We used a clustering-based approach to control for popula-

tion structure and linkage disequilibrium and identified single nucleotide polymorphisms

(SNPs) that were associated with resistance to β-lactams, aminoglycosides, and quinolones. In

addition, we found that both multi-mutated loci (those that are potential targets of parallel

pathoadaptation) and β-lactam resistance-associated variants were overrepresented in recom-

binogenic regions of the B.multivorans genome.

Results

We used a series of B.multivorans isolates that were cultured from respiratory specimens

obtained from one adult male with CF (patient CF170) being treated at the CF Clinic of

St. Michael’s Hospital, Toronto, Canada. In a ten-year period, patient CF170 acquired an inci-

dent (i.e. initial) lung B.multivorans infection, developed a chronic B.multivorans lung infec-

tion, received a double lung transplant, and finally experienced a B.multivorans re-

colonization of the allograft three years post-transplant. Isolates from each of these three

phases of his B.multivorans infection are represented in this study (Fig 1). We defined these

isolates as 1) the single isolate recovered from the patient’s first culture-positive sputum speci-

men–the ‘incident infection’ isolate; 2) 100 isolates collected six to seven years post-incident

infection from ten sputum specimens (ten isolates per specimen) over approximately a one-
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year period–the ‘chronic infection’ isolates; and 3) ten isolates collected from a single expecto-

rated sputum sample ten years after the incident infection, and three years after the patient

underwent a double lung transplant–the ‘post-transplant’ isolates. Patient CF170 was being

treated with alternating cycles of antibiotic therapy while chronically infected, with 13 antibi-

otics being administered at different intervals and durations over the course of the chronic

infection sampling period (Fig 1). The genomes of all 111 isolates were whole-genome

sequenced on the Illumina platform, yielding a median coverage depth of 117X (S1 Fig).

Multi-locus sequence typing was performed in silico by extracting seven loci from the whole

genome sequence data (atpD, gltB, gyrB, recA, lepA, phaC, trpB) and comparing them to the

Burkholderia cepacia complex MLST Databases in pubMLST. This analysis revealed that all

isolates were clonally related and of the sequence type ST-783 [24].

Genomic diversity and phylogenetic analysis suggest underlying population structure.

The de novo genome assembly of a single isolate recovered from the third chronic infection

sputum sample was used as the reference for the mapping assembly of all other isolates. This

particular isolate was chosen as the reference since it had the best overall de novo assembly

metrics. The reference assembly consisted of 6,444,123 bases across 26 contigs, which were

pseudo-scaffolded against the complete genome of B.multivorans ATCC 17616 (as ordered in

Fig 2A). Through a conservative variant calling pipeline [25], a total of 1,892 SNPs and 328

indels segregating among the 111 isolates were identified, with 1,039, 672, and 180 SNPs being

found on chromosomes, 1, 2, and 3 respectively. Only a single SNP was found in a contig

which did not map to the ATCC 17616 genome. Overall, 740 (39.1%) SNPs and 163 (49.9%)

Fig 1. Time course of B. multivorans infection in study patient CF170. A total of 111 B.multivorans isolates from twelve collection times were used in this study (1

isolate from the initial infection, 10 isolates from each of 10 sputum samples collected during chronic infection, and 10 isolates from a sputum sample obtained during a

post-transplant infection). Antibiotic treatment history during the chronic infection period is shown in the lower panel. Black bars indicate antibiotic administration,

while hashed bars indicate intermittent exposure in that time block (only relevant prior to the start of chronic sampling). The method of antibiotic administration is

shown as intravenous (iv), inhaled (inh), or oral (po).

https://doi.org/10.1371/journal.ppat.1007453.g001
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Fig 2. Genomic Characterization of 111 B multivorans isolates. (A) Contigs (gray outer ring) of the de novo reference were arranged according to the three

chromosomes of the complete genome of B.multivorans ATCC 17616. This genome was obtained from expectorated sputum collected in the third chronic infection
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indels were parsimonious informative (PI, i.e. non-singleton), and 226 (11.9%) SNPs and 99

(30.2%) indels segregated in at least two sampling time points. From the 1,892 SNPs, 70.4%,

15.7%, and 13.9% were non-synonymous, synonymous, and intragenic substitutions respec-

tively. 51.3% of the intergenic SNPs were found in putative regulatory regions (defined as the

intergenic region within 150 bases from the start codon of any gene). The population showed a

genetic diversity average of 123.62 ± 120.98 (number of SNP differences, mean ± standard

deviation) pairwise differences. The distribution of these difference suggested an underlying

population structure since genetic diversity was not uniform even among isolates from the

same specimen (S2 Fig).

We reconstructed the core genome phylogenetic relationships among all isolates using an

alignment of the 1,892 SNPs and Bayesian, maximum likelihood, and maximum parsimony

approaches (Fig 3A and S3B and S3C Fig). All three methods gave consistent results. The root

of the tree was identified by including B.multivorans ATCC 17616, B.multivorans BAA 247,

B.multivorans AU1185, B.multivoransDDS 15A-1, and B.mallei ATCC 23344 in the phyloge-

netic analysis (S3A Fig). Additionally, these strains and our 111 isolates were placed in the phy-

logenetic context of other bacteria in the Burkholderia genus (S4 Fig). The tree topology

indicates that the incident isolate diverged from the chronic and post-transplant isolates at the

base of the tree. The ten isolates from the post-transplant sample are highly divergent (relative

to the total diversity) and form a basally branching, monophyletic clade. The chronic infection

isolates form a less divergent monophyletic clade, which diversified into subgroups. The same

general structure is also observed in a network-based (i.e. neighbor-net) phylogenetic

approach (S5 Fig), where two groups of chronic infection isolates cluster in a star-like phylog-

eny. Star phylogenies are characterized by roughly equal divergence from the common ances-

tor, and are associated with recent purges in genetic variation due to selective or demographic

processes [26].

Population structure analysis clusters the isolates into five groups. We used the Monte

Carlo Markov Chain analysis of SNPs and indels implemented in STRUCTURE to infer popu-

lation structure among the 111 isolates [27]. We identified the lowest number of subpopula-

tions that maximized the likelihood of data; hence determining the underlying population

structure in the data without overestimating the number of subpopulations [28]. There were

three subpopulations that arose from single common ancestors, which we labelled groups R, B,

and G, comprising 54, 26, and 10 isolates, respectively (Fig 3C and 3D). The ancestral compo-

sition of the incident isolate and seven of the chronic infection isolates, recovered at collection

points T1, T2 and T10, resembled a combination of the three identified subpopulations. This

group of isolates was labeled RBG. Another group labeled RB (13 isolates) has an admixed

ancestry from the ancestral subpopulations of R and B.

Isolates from groups RBG and RB were found in low frequencies through different samples

from the chronic infection period (Fig 3B). In contrast, isolates from group R or B were more

dominant in this same period. The isolates from group R were first observed at the third time

point of the chronic infection samples, and they remained the most abundant group in subse-

quent chronic samples (Fig 4). In contrast, the abundance of group B isolates decreased over

time. The genetic diversity, measured as number of SNPs, significantly differed between these

groups (one-way ANOVA: F(4,1902) = 1,426.133, p-value < 0.0001), with group G (those

sample. (B) Genome annotation according to RAST. (C) SNP count per 10 Kb as a function of their location in the contigs. Non-synonymous (orange), synonymous

(yellow), putative regulatory (dark grey) and intergenic (light grey). (D) Indel (blue) count per 10 Kb. (E) Recombinogenic regions, as predicted by DnaSP Hudson-Kaplan

four gamete test, are shown as red blocks. (F) Variants Associated with Antibiotic Resistance. From outermost to innermost ring: aztreonam and ceftazidime (β-lactam),

amikacin and tobramycin (aminoglycoside), and ciprofloxacin (quinolone). This figure was prepared with circus v. 0.69 [90].

https://doi.org/10.1371/journal.ppat.1007453.g002
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recovered exclusively post-transplant) being the most diverse, followed by groups RBG and

RB, then groups R and B (S6A Fig).

The time to the most recent common ancestor (tMRCA) calculated as days before the last

sample for all isolates and the various STRUCTURE-defined groups is shown in Table 1. This

Fig 3. Population structure and antibiotic resistance profiles. (A) Phylogenetic relationships of the 111 B.multivorans isolates were estimated employing a Bayesian

approach based on genome-wide single nucleotide polymorphisms (SNPs). (B) Time of collection for each isolate. (C) Population structure analysis as assessed by

Structure v2.3.4 with three expected ancestral subpopulations. Ancestral subpopulations are coded as red (R), blue (B), and green (G). (D) Isolates are grouped based on

their ancestral composition. Group R, B, G, RB, and RBG are shaded in red, blue, green, purple, and grey respectively. (E) Antibiotic susceptibility for each isolate, the

highest black circle represents the MIC (μg/mL), to the β-lactams: aztreonam and ceftazidime, the aminoglycosides: amikacin and tobramycin, and the quinolone:

ciprofloxacin are shown as filled circles at six different concentration thresholds. This figure was elaborated at the interactive tree of life (iTOL) website v. 3 [91].

https://doi.org/10.1371/journal.ppat.1007453.g003
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analysis shows that the RGB group, which includes all of the chronic infection isolates as well

as the post-transplant isolates, coalesced to a common ancestor at roughly the same time as the

full isolate collection, including the incident infection (11.18 and 11.57 years before the final

sample, respectively). This result supports the hypothesis that the infection of the transplanted

lung originated from the same source as the incident isolate despite being separated by approx-

imately ten years, as opposed to being derived from the chronic infection population. Addi-

tionally, groups R and B diverged at approximately the same time (3.38 and 3.61 years before

the final sample, respectively). Unfortunately, we are unable to determine if these were

Fig 4. Population genomics of the community over time. Groups R, B, G, RB, and RBG are coloured in red, blue, green, purple, and grey respectively. (A) Frequency

of each group over time. (B) The clonal graph was created with the assumption that RBG is the group of isolates resembling the ancestor of all the isolates, and RB is the

group of isolates resembling the ancestor of group R and B. The distance between sample times is relative to the actual number of days between them. This plot was

created using fishplot v. 0.3 [92].

https://doi.org/10.1371/journal.ppat.1007453.g004

Table 1. Time to most recent common ancestry.

Group tMRCA (years) 95% HDP Interval

All Strains 11.57 9.73–15.50

Group RBG 11.18 9.73–14.11

Group RB 4.86 4.01–5.93

Group G 2.53 1.90–2.99

Group B 3.61 3.45–3.80

Group R 3.38 3.25–3.53

https://doi.org/10.1371/journal.ppat.1007453.t001
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allopatric populations colonizing distinct regions in the lung, or sympatric populations coex-

isting within the same compartment due to our sampling of expectorated sputum. The post-

transplant reinfection population (group G) had a most recent common ancestor of 2.53 years

before the final samples, which is consistent with the fact that patient CF170 underwent lung

transplantation approximately three years before the end of the study (i.e. the final sample).

dN/dS estimates support positive selection in the population

We determined the ratio of non-synonymous to synonymous substitutions (dN/dS) as an esti-

mate of selection. Since we expect that the importance of natural selection and/or genetic drift

will be more accurately reflected on those SNP segregating in the population over multiple

sampling time-points than on variants that segregate only in a single sample, we determined

the dN/dS ratios both for all SNPs as well as for only those that segregate in at two or more

time-points–‘multi-time’ SNPs (S6B Fig). The dN/dS for the overall population was 1.35 (95%

confidence interval, CI = 1.19–1.53) and 1.34 for multi-time SNPs (CI = 0.94–1.96), which

may indicate weak positive selection, or simply the segregation of mildly deleterious variants.

Only groups R and RB multi-time SNPs showed dN/dS above the neutral expectation of 1.0

(group R dN/dS = 2.05, CI = 0.57–11.15, group RB dN/dS = 2.38, CI = 1.08–6.18), although the

confidence intervals for the group R are quite large. All other groups had dN/dS ratios only

slightly elevated (ranging from 1.04–1.63), although the differences between groups were not

statistically significant.

Further support for positive selection comes from a significantly negative Tajima’s D test

(D = -2.21, P < 0.01) and Fu and Li’s tests (D� = -6.11, P< 0.02; F� = -5.20, P< 0.02). While

all three of these results can be explained by both positive selection and recent population

expansion, the combination of these results with the high nucleotide diversity and dN/dS > 1.0

is most consistent with positive selection.

GWAS identification of variants associated with antibiotic resistance

We assumed that the intensive antibiotic exposure during the chronic infection sampling

period would result in strong selection for resistance-associated genotypes in B.multivorans.
Minimum inhibitory concentrations (MICs) for two β-lactams (aztreonam, ceftazidime), two

aminoglycosides (tobramycin and amikacin), and the fluoroquinolone ciprofloxacin were

determined for all isolates by agar dilution using Clinical and Laboratory Standards Institute

procedures [29]. Isolates from the three phases of infection had distinct susceptibility profiles.

The incident isolate had MICs of 8 μg/mL or less for all agents tested, while all chronic infec-

tion and post-transplant isolates had significantly higher MICs for both of the aminoglycosides

tested (t-test p< 0.0001, Fig 3E), but variable MICs for the β-lactams and fluoroquinolone

tested (range:�8 to>512 μg/mL).

The 1,892 SNP positions segregating among the 111 isolates were grouped in 150 distinct

mutational profiles (i.e. one or more SNP positions that share the same pattern of reference vs.

alternative base among the strain collection, S7 Fig). Prior to population control, each of these

mutational profiles was examined for a statistical association to the five tested antibiotics at six

different levels of resistance and these associations were Bonferroni corrected for multiple test-

ing. Five mutational profiles (comprising 17 SNPs) were associated with resistance to both β-

lactam antibiotics, and one mutational profile (comprising 2 SNPs) was associated specifically

with ceftazidime (S8 and S9 Figs). Ten mutational profiles (comprising 250 SNPs) were associ-

ated with resistance to amikacin, tobramycin, and ciprofloxacin. Additionally, two mutational

profiles (comprising 31 SNPs) were associated with resistance to both aminoglycosides, and

four mutational profiles (comprising 33 SNPs) were associated specifically with ceftazidime.
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Next, we tested these variants against population structure controls, counting only those

associated variants that were observed in multiple subpopulation groups as determined by the

population structure analysis. This criterion could be satisfied by one of three mechanisms: 1)

the mutations arose in the subpopulations through multiple independent mutational events, 2)

they arose in a common ancestor of multiple subpopulations and have been maintained in

multiple lineages while being lost in others, or 3) the variants arose in one lineage, but were

transmitted to another via recombination. Out of all mutational profiles associated with ele-

vated MICs for both β-lactams, one (comprising a single SNP) passed the population structure

control (S8B Fig). This SNP was found in 20.4% of isolates in group R, and 50% of isolates in

group RBG. This variant leads to a non-synonymous amino acid substitution (P39S) in AmpD

(BMUL_2790), a protein extensively studied for its role in resistance to β-lactams [30, 31].

This mutation was predicted to have a deleterious effect on the protein function of AmpD by

PROVEAN analysis (score = -8.0, S10A Fig). The ampD locus appears to be an important

selective target since it was independently mutated a total of five times within our collection. A

second SNP in ampD (leading to the non-synonymous amino acid mutation F52S) was found

in a mutational profile that was similarly associated with β-lactam MICs; nevertheless, it failed

to pass the population structure control. Additionally, two mutational profiles associated to

the aminoglycosides and ciprofloxacin passed the population structure control (S8E Fig). One

of these mutational profiles, was defined by a non-synonymous amino acid substitution

(P211L) in an araC family transcriptional regulator locus (BMUL_3951; KEGG orthology

group K18991). PROVEAN analysis indicates that this mutation is unlikely to have a deleteri-

ous effect on the protein function (score = 6.906). The second mutational profile was defined

by a non-synonymous substitution (P304S) in an outer member protein or porin

(BMUL_3342; KEGG orthology group K03285). While this mutation is not expected to have a

deleterious effect on protein function (PROVEAN score = 3.273), the BMUL_3342 locus was

independently mutated two additional times.

Additional variants potentially associated with pathoadaptation can be

detected by identifying multi-mutated loci

Pathoadaptation is the process of selective enhancing bacterial virulence via mutational

changes that lead to the modulation or loss of function of pre-existing genes [32]. Genes that

are independently mutated multiple times provide strong evidence of parallel adaptation [33].

While these mutational patterns are typically associated with pathoadaptation towards viru-

lence and / or resistance, they may also reflect more general adaptation to both the biotic and

abiotic lung environment. The former may include adaptation driven by host derived pres-

sures as well as microbiological pressures from both conspecific and heterospecific strains. The

latter may include adaptation driven by simple environmental variables such as temperature,

moisture, pH, etc.

We observed 328 loci with two or more polymorphisms at distinct positions along the gene

in our collection (Table 2). Given the genome size and the total number of polymorphisms

(both SNPs and indels), we only consider the 62 loci carrying three or more independent

mutations to be statistically significant (p-value < 0.05/[1,892 SNPs + 328 indels = 2220 poly-

morphisms]). 184 SNPs (9.7%) and 26 indels (7.9%) were found in these 62 loci. No individual

nucleotide site was mutated more than one time. In other words, the mutations were clustered

by locus rather than by specific nucleotide position, reducing the likelihood that this pattern

was due to mutational hotspots. We further excluded the possibility that multi-mutated loci

showed excess polymorphism simply due to an increased mutational rate by examining the

mutational class spectrum for the multi-mutated loci relative to the genome-wide average.
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Table 2. Parallel pathoadapted loci with multiple independent mutations.

Locus Encoded Protein No. of SNPs

/ Indels

Probability a Biological Relevance Annotated homologs: organism

(query coverage)

BMUL_0641 LysR family transcriptional regulator 7/0 1.65 X 10−23 Antibiotic Resistance bpeT: Paraburkholderia
xenovorans (93.8)

BCEN2424_5592 c Glycosyltransferase 36 4/2 1.03 X 10−19 ? chvB: Burkholderia oklahomensis
(99.2)

BMUL_4010 NAD-glutamate dehydrogenase 5/0 6.48 X 10−16 Amino acid metabolism gdh2: Burkholderia vietnamiensis
(99.4)

BMUL_0487 Hypothetical protein 5/0 6.48 X 10−16 Lipopolysaccharide

biosynthesis

pagL: Pseudomonas aeruginosa
(99.9)

BMUL_4327 Porin 3/2 6.48 X 10−16 Antibiotic Resistance opcP1: Burkholderia
pseudomallei (99.3)

BMUL_2790 N-acetyl-anhydromuranmyl-L-alanine amidase 5/0 6.48 X 10−16 Antibiotic Resistance ampD
BMUL_1598 Amino acid adenylation domain-containing protein 4/0 4.06 X 10−12 Antibiotic Biosynthesis lgrC: Brevibacillus brevis (99.3)

BMUL_0353 YD repeat-containing protein 3/1 4.06 X 10−12 Secretion VgrG: Aggregatibacter
aphrophilus (77.7)

BMUL_0449 Preprotein translocase subunit 4/0 4.06 X 10−12 Quorum Sensing SecB
BMUL_2632 Chaperone protein 4/0 4.06 X 10−12 Protein Folding dnaJ
BMUL_4942 Signal transduction histidine kinase 3/1 4.06 X 10−12 Biofilm Formation wspE: Ralstonia solanacearum

(98.8)

BMUL_2775 UDP-N-acetylmuramate—L-alanyl-gamma-D-

glutamyl- meso-diaminopimelate ligase

4/0 4.06 X 10−12 Antibiotic Resistance mpl: Burkholderia mallei (99.8)

BMUL_1444 Transcription termination factor 4/0 4.06 X 10−12 Transcription

Machinery

rho

BMUL_0954 Glycoside hydrolase 15-like protein 4/0 4.06 X 10−12 Nutrient Metabolism cga: Burkholderia mallei (97.9)

BMUL_4115 Outer membrane autotransporter 4/0 4.06 X 10−12 Secretion ssp: Stenotrophomonas
maltophilia (81.4)

BMUL_0250 50S ribosomal protein L4 3/0 2.55 X 10−8 Translation rplD
BMUL_5547 Conjugation protein 2/1 2.55 X 10−8 Quorum Sensing trbI: Rhodoferax ferrireducens

(59)

BMUL_2931 TPR repeat-containing protein 3/0 2.55 X 10−8 Antibiotic Resistance bamD: Ralstonia solanacearum
(99.1)

BMUL_3678 Integral membrane sensor signal transduction histidine

kinase

3/0 2.55 X 10−8 Signal Transduction rstB: Burkholderia mallei (97.6)

BMUL_3503 L-serine dehydratase 1 3/0 2.55 X 10−8 Antibiotic Biosynthesis sdaA: Ralstonia solanacearum
(100)

BMUL_0690 RND efflux system outer membrane lipoprotein 2/1 2.55 X 10−8 Antibiotic Resistance oprM: Burkholderia mallei (97.4)

BMUL_0663 Alpha/beta hydrolase fold protein 3/0 2.55 X 10−8 ? PA0368: Pseudomonas
aeruginosa (87.6)

BMUL_0431 Histidine kinase 1/2 2.55 X 10−8 Signal Transduction dctB: Paraburkholderia
xenovorans (96.1)

BMUL_4510 Signal transduction histidine kinase 2/1 2.55 X 10−8 Chemotaxis cheA: Paraburkholderia
xenovorans (96.7)

BMUL_1970 Major facilitator transporter 3/0 2.55 X 10−8 Transport across the

Membrane

RPA4808: Rhodopseudomonas
palustris (99.5)

BMUL_2008 Major facilitator transporter 2/1 2.55 X 10−8 Transport across the

Membrane

oxlT6: Paraburkholderia
xenovorans (99.8)

BMUL_2621 DNA mismatch repair protein 1/2 2.55 X 10−8 DNA Repair mutL
BMUL_4037 Esterase 3/0 2.55 X 10−8 ? PA3628: Pseudomonas

aeruginosa (82.7)

BMUL_3977 Metallophosphoesterase 2/1 2.55 X 10−8 ? BMAA1343: Burkholderia mallei
(99.7)

BMUL_4949 Aldehyde dehydrogenase 2/1 2.55 X 10−8 ? gabD: Burkholderia mallei (1)

(Continued)
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Table 2. (Continued)

Locus Encoded Protein No. of SNPs

/ Indels

Probability a Biological Relevance Annotated homologs: organism

(query coverage)

BMUL_3951 AraC family Transcriptional regulator 3/0 2.55 X 10−8 Antibiotic Resistance mtrA: Neisseria gonorrhoeae
(99.7)

BMUL_6019 Cytosine/purines uracil thiamine allantoin permease 2/1 2.55 X 10−8 Transport across the

Membrane

BMAA0417: Burkholderia mallei
(96.9)

BMUL_0307 Amino acid carrier protein 3/0 2.55 X 10−8 Transport across the

Membrane

alsT: Burkholderia mallei (96.6)

BMUL_5501 Cytochrome c oxidase subunit I 3/0 2.55 X 10−8 Nutrient Metabolism coxAC: Burkholderia
pseudomallei (72.5)

BMUL_5087 Short-chain dehydrogenase/reductase SDR 3/0 2.55 X 10−8 Nutrient Metabolism fabG: Paraburkholderia
xenovorans (93.9)

BMUL_4813 RNA polymerase sigma factor 3/0 2.55 X 10−8 Translation rpoD
BMUL_3197 Beta-galactosidase 3/0 2.55 X 10−8 Nutrient Metabolism bgaB: Burkholderia thailandensis

(99.8)

BMUL_3212 Feruloyl-CoA synthase 3/0 2.55 X 10−8 Nutrient Metabolism fcs: Pandorea pnomenusa (94.5)

BMUL_3315 PA-phosphatase like phosphoesterase 1/2 2.55 X 10−8 Antbiotic Resistance bcrC: Nitrospirillum amazonense
(99.6)

BMUL_3752 Peptidoglycan-binding LysM 3/0 2.55 X 10−8 ? RSc3430: Ralstonia
solanacearum (5.6)

BMUL_3615 Aldehyde oxidase 3/0 2.55 X 10−8 ? iorB: Pseudomonas aeruginosa
(98.8)

BMUL_1686 Ribonuclease R 3/0 2.55 X 10−8 Translation vacB: Burkholderia mallei (94.1)

BMUL_4615 b Amidophosphoribosyltransferase 3/0 2.55 X 10−8 Amino acid metabolism purF: Burkholderia mallei (99.8)

BMUL_4605 UTP-glucose-1-phosphate uridylyltransferase 3/0 2.55 X 10−8 Amino acid metabolism galU-2: Burkholderia mallei
(100)

ABD05_14940 d Isochorismatase 3/0 2.55 X 10−8 Quorum Sensing entB: Burkholderia ambifaria
(100)

BMUL_1431 GAF modulated sigma54 specific transcriptional

regulator

2/1 2.55 X 10−8 Transcription

Machinery

acoR: Paraburkholderia
xenovorans (97.6)

BMUL_1377 N-acetyltransferase GCN5 3/0 2.55 X 10−8 ? BMA1429: Burkholderia mallei
(96.6)

BMUL_0964 DNA polymerase III subunit alpha 3/0 2.55 X 10−8 DNA Repair dnaE: Burkholderia mallei (100)

BMUL_0692 Carbohydrate kinase FGGY 2/1 2.55 X 10−8 Nutrient Metabolism xylB: Paraburkholderia
xenovorans (99.4)

BMUL_0477 Error-prone DNA polymerase (DnaE2) 3/0 2.55 X 10−8 DNA Repair dnaE2: Burkholderia mallei
(99.9)

BMUL_0443 Phosphoenolpyruvate-protein phosphotransferase 3/0 2.55 X 10−8 Signal Transduction ptsI: Burkholderia mallei (94.1)

BMUL_3068 Aldehyde dehydrogenase 3/0 2.55 X 10−8 ? BMA3273: Burkholderia mallei
(100)

BMUL_4835 Hypothetical protein 2/1 2.55 X 10−8 ? STY4627: Salmonella enterica
(99)

BMUL_1873 UvrD/REP helicase 3/0 2.55 X 10−8 DNA Repair uvrD: Burkholderia mallei (99.9)

BMUL_2536 Hypothetical protein 3/0 2.55 X 10−8 ? RSp0803: Ralstonia
solanacearum (35.5)

BMUL_2710 Outer membrane autotransporter 3/0 2.55 X 10−8 Transport across the

Membrane

aidA-I: Enterobacter sp. 638

(57.5)

BMUL_0123 Heavy metal translocating P-type ATPase 3/0 2.55 X 10−8 Transport across the

Membrane

cadA: Burkholderia mallei (82.5)

BMUL_0116 Acyl-CoA dehydrogenase domain-containing protein 3/0 2.55 X 10−8 Lipid Metabolism aidB: Burkholderia mallei (99.6)

BMUL_0075 Two component transcriptional regulator 2/1 2.55 X 10−8 Signal Transduction Bxe_A0008: Paraburkholderia
xenovorans (100)

BMUL_4226 4-hydroxyphenylpyruvate dioxygenase 3/0 2.55 X 10−8 Amino acid metabolism hppD: Paraburkholderia
xenovorans (96.3)

(Continued)
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While the rate of non-synonymous, synonymous and intergenic mutations among all 1,892

SNPs is 70.5%, 15.6%, and 13.9% respectively, the mutational class spectrum of the SNPs

found among multi-mutated loci is 83.1% non-synonymous, 11.7% synonymous, and 3.2%

intergenic substitutions. Therefore, the mutational class distribution of SNPs found in multi-

mutated loci is significantly skewed toward an excess of non-synonymous mutations

(P< 0.0001, chi-square test).

Some of these multi-mutated loci are known to play significant roles in antibiotic resistance.

For example, a gene encoding a LysR family transcriptional regulator (BMUL_0641) has seven

independently acquired mutations. The probability of any one gene being mutated seven

times given our dataset is 1.65x10-23. Homologs of this locus in other Burkholderia species are

annotated as bpeT, which is strongly associated with drug resistance [34–36]. A locus with five

multiple mutations (P = 6.48x10-16) encodes N-acetylmuramoyl-L-alanine amidase (AmpD,

BMUL_2790), which is associated with resistance to β-lactam antibiotics [30].

We performed a functional enrichment analysis on the multi-mutated loci and found that

the Gene Ontology (GO) function phosphorelay signal transduction system was overrepre-

sented in multi-mutated genes compared to the whole genome (P = 0.050). The phosphorelay

signal transduction system has been previously described as a therapeutic target, given that it

controls the expression of genes encoding virulence factors [37].

We also found ten genes that had two independent mutations located in the same or adja-

cent codon (Table 3). The mutational class spectrum of the SNPs associated with this

Table 2. (Continued)

Locus Encoded Protein No. of SNPs

/ Indels

Probability a Biological Relevance Annotated homologs: organism

(query coverage)

BMUL_4749 Amino acid permease 2/1 2.55 X 10−8 ? PA0789: Pseudomonas
aeruginosa (98.1)

a Probability of resampling with replacement any locus n times, given a genome size of N. P = (1/N)^(n − 1).
b A mutation occurred in the intergenic region flanking the start codon of this locus.
c This locus is not found in ATCC 17616. The homolog with highest similarity is in B. cenocepacia HI2424
d This locus is not found in ATCC 17616. The homolog with highest similarity is in B. pyrrocinia DSM10685

https://doi.org/10.1371/journal.ppat.1007453.t002

Table 3. Pairs of mutations occurring in the same or in neighboring codons.

Encoded Protein Proximity

Regulatory protein GntR, HTH:GntR, C-terminal Adjacent codon

Oligopeptide ABC transporter, periplasmic oligopeptide-binding protein (OppA) 2 codons away

Citrate-proton symporter 2 codons away

CDP-6-deoxy-delta-3,4-glucoseen reductase-like 2 codons away

RNA polymerase sigma factor (RpoD) a Same codon

Endo-1,4-beta-xylanase Z precursor b Adjacent codon

Isoquinoline 1-oxidoreductase beta subunit b 2 codons away

LSU ribosomal protein L4p (L1e) b Same codon

Chaperone protein (DnaJ) c Adjacent codon

LysR family transcriptional regulator d 2 codons away

a Loci additionally mutated 1 more time. Additional mutation is synonymous.
b Loci additionally mutated 1 more time. Additional mutation is non-synonymous.
c Locus additionally mutated 2 more times. All non-synonymous mutations.
d Locus additionally mutated 5 more times. All non-synonymous mutations.

https://doi.org/10.1371/journal.ppat.1007453.t003
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observation is of 90%, 10% and 0%, non-synonymous, synonymous, and intergenic sub-

stitutions, respectively. In this case, the fraction of non-synonymous mutations is signifi-

cantly higher than the fraction found for both all SNPs, as well as all the SNPs in the

multi-mutated loci (P < 0.00001, chi-square test). One of the genes with multiple inde-

pendent mutations in the same codon encodes for RNA polymerase sigma factor (RpoD),

which is associated with the expression of housekeeping genes [38]. One of the mutations

in this locus is fixed between the post-transplant isolates and the rest of the isolates, and

the other mutation is fixed between the isolates in group RBG collected in the tenth sam-

ple time and the rest of the isolates.

Parallel pathoadaptive variants are overrepresented in recombinogenic

regions

We looked for signals of recombination in our isolates using both the four-gamete tests of

Hudson and Kaplan [39] and BratNextGen [40]. We identified a minimum of 15 regions with

signatures of recombination in at least one of these methods (Fig 2D). Three of these events

were identified between sites in different genome assembly contigs; therefore, they were not

considered in downstream recombination analysis. The nucleotide length of this recombino-

genic regions ranged from 4,783 bases to 192,532 bases, and these regions account for 15.1% of

the assembled genome. 300 (15.9%) out of the total 1,892 SNPs and 47 indels (14.3%) occur in

these regions, which is not significantly different than expected given the recombinogenic pro-

portion of the genome.

Fig 5. Distribution of pathoadaptive variants in recombinogenic regions of the genome. (A) Distribution of the mutations associated with the tested antibiotics in

the identified recombinogenic regions and in the rest of the genome (��� p< 0.0001, chi square test with multiple test correction). (B) Distribution of the mutations in

multi-mutated loci in the identified recombinogenic regions and in the rest of the genome (��� p< 0.001, chi square test with multiple test correction).

https://doi.org/10.1371/journal.ppat.1007453.g005
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A recombinogenic region on the first chromosome (281,829–322,435) was involved in

genetic exchange between isolates in the groups B and RB. This region contained 16 SNPs, out

of which four were statistically associated with resistance to aminoglycosides and to ciprofloxa-

cin prior to population control (Fig 2Ei, Supplementary Table 1). Two of these mutations,

which segregated in different isolates, occurred in adjacent bases and led to amino acid substi-

tutions in the same codon of a gene encoding the 50S ribosomal protein L4p (L1e,

BMUL_0250). The other two mutations led to two non-synonymous amino acid substitutions

in a gene encoding glycerol-3-phosphate transporter ATP-binding subunit (BMUL_0301).

Another recombinogenic region in the first chromosome (1,566,898–1,695,617) affected only

isolates from the post-transplant sample. 47 SNPs were detected in this region, four of these

were associated with resistance to both aminoglycosides and to ciprofloxacin, and one was

associated only to aminoglycosides prior to population control (Fig 2Eiii, Supplementary

Table 2). These five mutations led to five non-synonymous mutations in the genes encoding

ABC transporter-like protein (BMUL_2127), acyl carrier protein (BMUL_2180), malonyl

CoA-acyl carrier protein transacylase (BMUL_2182), D-amino acid dehydrogenase small sub-

unit (BMUL_2240), and DL-methionine transporter ATP-binding subunit (BMUL_2245),

respectively. We were not able to identify the source of the remaining identified recombination

events.

We examined association between the recombinant regions and the polymorphisms associ-

ated with antibiotic resistance. 20.1% (56 of 279) of SNPs associated with both aminoglyco-

sides assayed (amikacin & tobramycin), and 16.4% (46 of 281) of SNPs associated with

ciprofloxacin were found in recombinogenic regions (Fig 5A). These ratios failed to reject the

null hypothesis of random distribution of mutations around the genome. On the other hand,

52.9% (9 of 17) and 47.4% (9 of 19) of the SNPs associated with aztreonam and ceftazidime,

respectively, were found in recombinogenic regions, which significantly differs from null

expectations (p< 0.0001, chi square test). Additionally, while the phylogenies of aminoglyco-

side and ciprofloxacin associated SNPs resemble the overall phylogeny, the phylogenies of β-

lactam associated SNPs have topologies different from the topology of the overall phylogeny

(S11 Fig).

Finally, 26.6% (49 of 184) of SNPs and 8.5% (49 of 47) of indels found in multi-mutated loci

(those with at least three distinct polymorphic positions) occur in the identified recombino-

genic regions (Fig 5B). Intriguingly, while the proportion of SNPs in these multi-mutated loci

are overrepresented in recombinogenic regions (P< 0.0001, chi square test), the proportion of

indels are not.

Discussion

Our study investigated how B.multivorans evolves within the lungs of an individual afflicted

with CF using a deep longitudinal sampling design (i.e. multiple isolates obtained per sputum

sample) to capture both the overall population diversity and the temporal shifts that occurred

at different phases of the infection, including the colonization of a new lung allograft. To iden-

tify the source of genetic diversity in this B.multivorans population, we needed to understand:

1) the genetic relationships between the incident isolate that was recovered from the first BCC-

positive sputum culture, the chronic strains that persisted in the population, and the popula-

tion of strains that re-established an infection post-transplant; 2) whether there were multiple

colonization events of the patient by divergent clones; 3) how genetic diversity was generated

and dispersed in the population; and 4) how the pathogen adapts and responds to clinical

treatment. While we were unable to address all of these questions, we have concluded that the

chronic population originated from either the incident isolate, or a clone that shared a recent
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common ancestor with the incident isolate. Furthermore, all of the chronic isolates descended

from a single common ancestor, ruling out multiple independent colonization events.

One clear signal is that the B.multivorans isolates recovered from the post-transplant lung

did not originate from the chronic population. In fact, it appears that the post-transplant iso-

lates originated from the same source as the incident isolate. Based on the current literature,

the most likely source of these isolates is the upper respiratory tract, although environmental

sources cannot be ruled out [41–44]. Upper airway sampling was not performed on this pa-

tient, so we have no information on the microbiome of this compartment. While some trans-

plant procedures attempt to clean the nasal reservoir prior to transplant via nasal washing /

scraping, we do not know if this procedure was done on this patient. If the upper airway was

the source for both the incident isolate and the post-transplant isolates, the latter would have

been exposed to ten additional years of antimicrobial treatments than the former, perhaps

explaining why these isolates have antibiotic susceptibility pattern more similar to the chronic

isolates. We also note that the post-transplant population is much more genetically diverse

than any of the chronic populations. This could suggest that this population was rapidly adapt-

ing to an environmental change, such as the shift from CF to non-CF conditions, which would

include, differences in immune response, the composition of the allograft microbiome, and

treatment regimens. Alternatively, it could reflect colonization by a population of related

strains. It is possible that given sufficient time this population would eventually be winnowed

down to a single surviving clone (as is seen with the incident infection) due to selection and /

or genetic drift.

A major motivator for this study was to better understand how pathogens adapt to their

hosts over the course of disease progression and treatment; an issue that can be addressed

using statistical association tests. Correcting for the genetic structure of the bacterial popula-

tion poses a challenge to the implementation of these tests. Population structure in this context

refers relationships among strains due to descent from a common ancestor and limited recom-

bination. This structure results in the linkage of segregating genetic variation around the

genome, which makes it very difficult to distinguish a causal mutation that is responsible for a

phenotype of interest from a neutral variant that occurred in the same genetic background. In

the absence of recombination, the neutral mutation will have the same population distribution

as the causal mutation due to genetic hitchhiking. This issue is particularly prevalent when

studying largely isolated and recently evolved populations, such as the case of pathogens evolv-

ing within a host.

To overcome these two issues, we imposed a lineage control filter on our GWAS approach,

in which we focused only on mutations that occurred in multiple, distinct, genetic lineages.

This pattern can best be explained by recombination of polymorphisms between lineages, but

formally, could also be due to extensive gene loss. Our analysis showed that linkage disequilib-

rium was only disrupted in a relatively small number of polymorphisms (those polymorphisms

shown as orange circles; S8B–S8E Fig). This reinforces the need for deep sampling since the

infrequent recombination signals may have been missed if isolates were only collected from a

single sample, or if only single isolates were recovered from each sample. Consequently, the

tractability of GWAS in this B.multivorans population was greatly enhanced by our sampling

schema.

Using the established lineage structure of the B. multivorans population as control for our

association study, we identified two non-synonymous SNPs associated with resistance to the

aminoglycosides amikacin and tobramycin, and to the quinolone ciprofloxacin. One of these

SNPs occurs in a locus encoding an AraC family transcriptional regulator, which is homolo-

gous to MtrA in Neisseria gonorrhoeae, an obligate human pathogen [45]. MtrA is required for

the induction of themtrCDE-encoded efflux pump system, which removes macrolide
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antibiotics, penicillin, and antimicrobial effectors of the innate defense from the cell [46]. Our

PROVEAN analysis predicted that this mutation would not significantly impact the function

of the encoding protein, but the appropriate regulation of this efflux pump system could prove

crucial for the survival of these bacteria. The second SNP associated with aminoglycoside and

ciprofloxacin resistance was found in a locus annotated as a porin. This locus encodes a mem-

ber of the general bacterial porin family, and shares common ancestry with Burkholderia pseu-
domallei’s OpcP1, which is a subunit of the porin oligomer OpcPO [47]. This family of porins

has been associated with the bacterial survival in the airways of the CF lungs by limiting the

uptake of small hydrophilic molecules, including ciprofloxacin, into the cell [48, 49]. The func-

tion of the encoding protein was not estimated to change because of this SNP; nevertheless,

the adequate functioning of these porins in the outer membrane of Burkholderia multivorans
plays an important role in their survival and resistance [50].

Additionally, we identified a single SNP associated with resistance to the β-lactams aztreo-

nam and ceftazidime. This SNP occurs in the ampD gene, which affects the expression of the

β-lactamase AmpC and likely also PenB [30] and is expected to have a deleterious effect in the

encoding protein. This observation is not unexpected as bacteria treated with β-lactams benefit

from the constitutive overproduction of β-lactamase. Overall, AmpD seems to play an impor-

tant role in the adaptation of this B.multivorans population to antimicrobial treatment since

four other independent non-synonymous mutations, all of which are expected to have deleteri-

ous effects on the protein, occur at this locus (S10A Fig).

Our population structure control criterion, which focuses on those polymorphisms present

in multiple lineages, resulted in the exclusion of some variants associated with resistance or

virulence, e.g. one of the four mutations in ampD, which was statistically associated with β-lac-

tam resistance. A population structure control is critical for distinguishing putatively causative

mutations from hitchhiking variants that are carried along by linkage disequilibrium. Filtering

in this manner reduces the number of false positives; nevertheless, variants underlying pheno-

types of interest could be segregating in linkage disequilibrium blocks, and therefore, may not

be identified in our GWAS approach (i.e. false negatives).

We observed that mutations associated with resistance to β-lactams (prior to lineage con-

trols) occur disproportionately in recombinogenic regions (Fig 2F), while variants associated

with both aminoglycosides or ciprofloxacin are randomly distributed with respect to recombi-

nogenic regions. Patient CF170 received both long-term maintenance β-lactam and aminogly-

coside treatments in addition to multiple short-term β-lactam treatments that included cycles

of ceftazidime, piperacillin/tazobactam, meropenem, and cefepime. This more aggressive and

varied course of treatment with β-lactams could potentially explain the increased role of

recombination in the dissemination of putatively beneficial polymorphisms, similar to what

has been observed in other pathogens [51, 52].

Parallel evolution has been shown to be a reliable signal for identifying genes involved in

host adaptation, including virulence and resistance to antibiotics, among CF lung pathogens

[25, 53–57]. Our analysis identified numerous genes showing a statistical excess of indepen-

dent mutations (i.e. putative parallel pathoadaptations) [25, 32, 57]. Examining multi-mutated

loci can reveal the heterogeneous selective pressures that bacteria must adapt to in order to

reside within the lung. For instance, a gene encoding a transcription regulator of multidrug

resistance efflux pumps independently accumulated seven different mutations leading to eight

unique alleles in our population of 111 B.multivorans isolates. We also found seven different

alleles of a locus encoding cyclic β-1,2-glucan synthase, which is linked to bacteria’s ability to

elude host cell defenses [58]. A number of loci underlying virulence-associated traits, such as

quorum sensing and biofilm production, also carry multiple independent mutations. Particu-

larly interesting are multi-mutated loci with no characterized function, or with no prior
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linkage to resistance or virulence. These loci include a NAD-glutamate dehydrogenase locus

BMUL_4010, which was mutated five independent times over the course of the study, and a

glycosyl transferase protein (BCEN2424_5592), not previously seen in B.multivorans that was

mutated six times (4 SNPs and 2 indels) during the course of the study. Examples such as these

provide excellent candidates for characterizing the spectrum of ways pathogens adapt to their

hosts, including selection for antibiotic resistance, adaptation to the host immune system and

physical environment, resource utilization, microbe-microbe competition, and even unknown

selective forces. Perhaps the strongest signals of parallel pathoadaptation involve those cases

where mutations occur independently in the same or adjacent codon. These observations sug-

gest a specific form of selective pathoadaptation, which identifies the specific residue or region

of the locus that potentially plays a role in selection.

While the most frequently found targets of parallel evolution are loci associated with antibi-

otic resistance other classes of targets have also been identified [25, 53, 57, 59]. For instance,

Silva et al. reported parallelism in an OmpR-like response regulator, which is involved in the

mucoidy phenotype of B.multivorans, and later showed its association with persistence in the

CF lungs [54, 60]. We found two related multi-mutated genes encoding an OmpR family-sen-

sor histidine kinase (BMUL_3678) and an OmpR family response regulator (BMUL_0075). A

study of the within-host evolution of B. pseudomallei in seven Australasian CF patients by

Viberg et al. [61] found multiple independent mutations in genes involved in DNA repair

(mutS), translation (rpoD), protein folding (dnaK), and secretion (vgrG). Similarly, we

observed multiple independent mutations in genes involved in the same processes (mutL,

BMUL_2621; rpoD, BMUL_4813; dnaJ, BMUL_2632; and vgrG, BMUL_0353). While these

examples of parallel evolution are suggestive of the pathoadaptive direction of our B.multivor-
ans population, we cannot conclusively determine which mutation or group of mutations are

responsible for the pathoadaptation of the bacterial population in the lungs of patient CF170.

Finally, our study highlighted an intriguing role for recombination in the development of anti-

microbial resistance in B.multivorans. We observed that multi-mutated loci were over-repre-

sented within recombinogenic regions, along with an excess of mutations associated with β-

lactam resistance. This suggests that while recombination plays an important role in the pathoa-

daptation of this B.multivorans population, its selective benefit may be environment dependent.

Our study illustrates the relevance of deep, longitudinal sampling to the implementation of

GWAS approaches in a population under positive selection. We identified the potential genetic

basis behind the antibiotic resistance of a B.multivorans population in a single host. Moreover,

this approach allowed us to study variants associated to antibiotic resistance and revealed that

resistance to β-lactams may be passed within the population via recombination. This study is

limited to in silico predictions of the impact mutations on protein function, and future efforts

should include functional validation of these mutants; nevertheless, many of the identified

genes are already well-established targets for antibiotic resistance. Additionally, our findings

are restricted to a single patient and a single bacterial species; extending this approach in other

systems under positive selection will be required to establish the generalizability of the find-

ings. Nevertheless, this study is one of the first examining in depth the fine-scale evolution of

B.multivorans in the lungs of a CF patient as it transitions from chronic infection to the even-

tual reinfection of a transplanted allograft.

Materials and methods

Ethics statement

All protocols involving the collection, handling and laboratory use of respiratory specimens

were approved by the Research Ethics Boards of St. Michael’s Hospital (Protocol #09–289)
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(Toronto, Canada) and the University Health Network (Protocol #09-0420-T) (Toronto, Can-

ada). We obtained written informed consent from the study subject prior to specimen collec-

tion and sputa were produced voluntarily. All experiments involving clinical specimens were

performed in accordance with the Tri-Council Policy Statement: Ethical Conduct for Research
Involving Humans, of the Canadian Institutes of Health Research, the Natural Sciences and

Engineering Research Council of Canada, and the Social Sciences and Humanities Research

Council of Canada.

Specimen collection and isolation of B. multivorans
Sputum specimens were collected by expectoration from a 29-year-old male (CF170), with a

homozygous ΔF508 CFTR genotype being followed at the Adult CF Clinic at St. Michael’s

Hospital (Toronto, Canada). Ten sputum specimens were collected over a 10-month period

while the patient was in the advanced stages of CF lung disease (assessed by the forced expira-

tory volume in 1 second (FEV1), FEV1 which was 27–39% predicted throughout the course of

the study), and an additional sputum specimen obtained after the patient had undergone dou-

ble lung transplantation. All specimens were processed for bacterial culture as previously

described [62]. After 48h of incubation, cultures were visually inspected, and each distinct col-

ony morphotype was described using eight characteristics of physical appearance (pigmenta-

tion, size, surface texture, surface sheen, opacity, mucoidy, autolysis and margin shape). Ten

colonies were selected from each sputum culture in relation to the diversity of colony types

present. The incident isolate was obtained from the Burkholderia cepacia complex repository

at St. Michael’s Hospital and was recovered from the first BCC positive sputum culture pro-

duced by the study patient (Toronto, Canada). Isolates were stored at −80˚C in 20% (v/v) glyc-

erol after a 20h subculture in LB broth (Wisent Inc., QC, CA) and confirmed as Burkholderia
spp. by a secondary subculture onto both Burkholderia cepacia selective (BCSA) (HiMedia

Laboratories, Mumbai, IN) and MacConkey (Becton Dickinson, MD, USA) agars, as well as

being tested for growth at 42˚C. The recA gene was sequenced from each isolate as described

by Spilker et al. for preliminary speciation [63].

Antimicrobial susceptibility testing

Each isolate confirmed as B.multivorans was screened for antimicrobial susceptibility by agar

dilution using Clinical and Laboratory Standards Institute procedures [29]. We tested suscep-

tibility to representatives of the β-lactam (aztreonam [ATM], ceftazidime [CAZ]), fluoroquin-

olone (ciprofloxacin [CIP]) and aminoglycoside (amikacin [AMK], tobramycin [TOB])

(Sigma-Aldrich, ON, Canada) classes. Minimum inhibitory concentrations (MIC), defined as

the lowest concentration of each antibiotic to inhibit growth, were reported as the median

MIC of three independent experiments. Growth was assessed following 24 to 48 h of incuba-

tion on Mueller-Hinton agar (Becton, Dickinson, MD, USA). The B.multivorans ATCC 17616

strain was included as a positive control, while P. aeruginosa ATCC 27853 and E. coli ATCC

25922 were used as quality controls.

Sequencing and quality control

B.multivorans isolates were whole-genome sequenced on the MiSeq and NextSeq Illumina

platforms. This sequences can be found in NCBI’s BioProject Accession: PRJNA475602. The

number of bases sequenced per isolate ranged from 213 to 2,262 million bases, and the median

was 1,002 million bases. Trimmomatic v. 0.33 was used to remove adapters and quality trim

the sequencing reads from each isolate (parameter settings: PE -phred33 ILLUMINACLIP:

adapters.fa:2:30:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:25) [64]. Sequencing
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reads with guanine homopolymers longer than ten bases were trimmed with cutadapt v. 1.9.1

(parameter settings: -a “G[65]”) [66]. Reads bellow 100 bases were removed using Trimmo-

matic v. 0.33 (parameter settings: PE–phred33 MINLENGTH:100). The resulting quality-con-

trolled sequencing reads yielded a median read depth per position of 117X (range 32-276X).

De novo and reference mapping assembly

Each of the isolates was de novo assembled using the CLC Genomics Workbench v. 8.0.1 (Aar-

hus, Denmark). Contigs with a scaffolding depth lower than 10X and/or with a size smaller

than 1 Kb were removed from further analyses. Isolate CF170-3b, which was sequenced with

250 bp-long paired-end reads, yielded the best assembly metrics in 26 contigs with lengths

ranging from 1,010 to 1,243,078 bases and an N50 of 654,231. The final assembly length of the

CF170-3b isolate was of 6,444,123 bp. These contigs were annotated at the RAST server using

the native gene caller and Classic RAST as the annotation scheme [64]. Additionally, each

CDS identified by RAST was blasted against the genome of B.multivorans ATCC17616 (if

no hit found, we blasted against B. cenocepacia 22E-1 and B. cenocepaciaHI2424) [67, 68].

Further, this genome was functionally annotated with blast2go v 4.1.9 [69] including blastx v.

2.6.0+ [67] and the KOALA annotation tool, which enabled KEGG orthology annotation [70].

Statistical results from the functional enrichment analysis were Bonferroni corrected for multi-

ple testing using the number of multi-mutated genes (P-value/62). The contigs of the CF170-

3b genome were used as the reference for mapping assembly of each remaining isolate. We

performed three different reference-mapping assemblies including BWA v 0.7.12 [71], LAST v

284v [72] and novoalign v 2.08.03 (Novocraft Technologies).

Single Nucleotide Polymorphism (SNP) and indel Calling

SAMtools and BCFtools v 0.1.19 were used to produce the initial set of variants [73]. We

implemented a method previously described to detect SNPs among the 111 isolates [25, 53].

First, 1,892 high-confidence polymorphic positions were identified using the following criteria:

1) variant Phred quality score of� 30, 2) variants must be found at least 150 bp away from

either the edge of the reference contig or an indel, and 3) variants must be called in the three

reference mapping experiments. Second, we reviewed each high-confidence polymorphic

position in each isolate with a relaxed Phred score threshold of 25. Support for either the refer-

ence or the SNP call was verified with a multi-hypothesis correction which required that at

least 80% of the sequencing reads endorsed the SNP or the reference. If the data did not sup-

port either base, then the position was called as an ambiguous base (‘N’). The ambiguous call

rate was lower than 0.01%.

Candidate indels detected by BWA and SAMtools were examined by realigning mapped

and unmapped sequencing reads to the indel regions using Dindel v. 1.01 [74]. High-confi-

dence indel positions were defined as sites with: 1) variant Phred quality score of� 35; 2) at

least two forward and two reverse reads; and 3) sequencing coverage� 10. These indel posi-

tions were reviewed in each isolate. The final indel call required a Phred quality score� 25

and an allele frequency� 80%. Ambiguous indel calls were defined as those where the allele

frequency was� 20%.

Population and single genome sequencing evaluation

We performed bulk population sequencing on the post-transplant specimen to confirm that

our isolate sampling depth appropriately represented the real B.multivorans population diver-

sity (S12 Fig). The sequencing reads from each of the ten isolates from the post-transplant sam-

ple were rarified to 1/10th of the number of sequencing reads produced by the population
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sequencing experiment. These reads were combined in corresponding paired-end fasta files.

Next, population and single isolate sequencing reads were mapped to the de novo assembled

genome of the CF170-3b isolate using BWA. Mutation allele frequencies for each experiment

were estimated as previously described by Lieberman et al. [53].

Phylogenetic, population structure, coalescent and recombination analyses

Using the 1,892 SNPs, we created a genome-wide alignment to reconstruct the phylogenetic rela-

tionships among the 111 isolates. The phylogeny was calculated using MrBayes v. 3.2.6 [75]. The

nucleotide substitution model that best fit our data was the General Time Reversible (GTR) with

gamma-distributed rate variation across sites (LnL = -13,152.7810, AIC = 26,832.1306) as calcu-

lated with jModelTest v. 2.1.10 [76]. The Bayesian analysis was run through four different chains

of 1 million Markov Chain Monte Carlo (MCMC) generations sampled every 100 MCMC gener-

ations and the burn-in period was of 250,000 MCMC generations. The final average standard

deviation of split frequencies was of 7.3x10-3, and the potential scale reduction factor (PSRF) of

the substitution model parameters ranged from 1–6.66x10-5 to 1 + 4.83x10-4. The phylogeny was

rooted with B.multivoransATCC 17616 [77]. The network-based phylogenetic analysis was per-

formed using SplitsTree v 4.14.4 [78]. We employed the Jukes-Cantor distance matrix to imple-

ment the neighbor-net Network (Fit = 99.804).

The variance among the 111 isolates, including SNPs and indels, was employed to investi-

gate the population structure using the Structure software v 2.3.4 [27]. Structure employs a

Bayesian algorithm to detect the number of ancestral populations (K), also known as clusters,

which describe the variance and covariance observed in a test population. The number of clus-

ters ranging from 1–10 was tested in triplicates through 1 million MCMC generations sampled

every 1,000 MCMC generations and a burn-in period of 250,000 MCMC generations. We

used the correlated allele frequencies model, and admixture was allowed in these analyses. We

plotted the estimated ln probability of data for the tested levels of K, and identified the smallest

stable K as the optimum value since it maximized the global likelihood of the data (S13 Fig)

[79]. The estimated ln probability of data plateaus at K = 3, where the variance of ln likelihood

ranges from 2,343.0 to 2,353.1. Assuming three ancestral populations, the isolates were classi-

fied into five different groups according to their ancestry. Isolates whose ancestry is attributed

exclusively (>90%) to either ancestral population one, two, or three are grouped in group red

(R), (B), or (G), respectively. Group RB includes isolates with admixed ancestry from clusters

one and two (at least 10% of both cluster one and two, and less than 10% of cluster three). Iso-

lates whose ancestral composition is made up from a combination of all three clusters (at least

10% of each cluster) are in group RBG.

We used BEAST v. 1.8.4 to implement a Bayesian approach to inferring the time to the

most recent common ancestor (tMRCA) for the entire population and each group individually

[80]. Next, we employed the GTR nucleotide substitution model, and estimated the nucleotide

substitution frequencies with MEGA7 using the Maximum Likelihood Estimate of the Substi-

tution Matrix tool ([AC] = 0.0091, [AG] = 0.4281, [AT] = 0.0016, [CG] = 0.0260, [GT] =

0.0061, and [CT] = 0.5290) [81]. Preliminary analyses consisting of duplicate 10 million gener-

ations and a 10% burn-in were used to estimate the appropriate molecular clock and demo-

graphic models. We tested the Bayesian skygrid, constant size and the exponential, logarithmic

and expansion growth population size models using three different molecular clock models

(strict and the lognormal and exponential uncorrelated relaxed clocks). The exponential

relaxed uncorrelated molecular clock and the Bayesian skygrid model was inferred the most

appropriate given our data ([AIC] = 26,228.421) [82]. The final analysis was run in duplicate

for 1 billion MCMC generations sampled every 1,000 MCMC generation, and the burn-in
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period was set at 20% of the MCMC generations. The inferred molecular clock was consistent

with the number of mutations observed in our isolates through time (S14 Fig).

Population genetic tests and detection of recombination events in each contig were per-

formed with DnaSP v. 5.10.01 [83] and BratNextGen, which was run with 500 iterations [40].

We calculated the pairwise homoplasy index (Fw, PHI statistic), which considers the mini-

mum number of homoplasies needed to account for the linkage between two sites [84]. This

statistic rejected the null hypothesis of no recombination in the regions we had identified as

recombinogenic (p<0.01). Additionally, a phylogenetic analysis of the identified recombino-

genic regions reveal different topologies compared to the overall phylogeny (S15 Fig).

SNP to phenotype association

Each mutational profile was tested for statistical association to each antibiotic. In order to dis-

card mutational profiles specific to a subpopulation, mutations were simulated to occur along

the phylogeny through a parsimonious process, so as to identify mutations which occurred

independently in more than one subpopulation. Mutations arisen through a single mutational

event in a single subpopulation were deemed to be in linkage disequilibrium with the muta-

tions that are fixed in that subpopulation.

We tested the null hypothesis that the presence or absence of each of the 1,892 SNPs, sum-

marized in 150 distinct mutational profiles, is equally likely found in antibiotic resistant iso-

lates using Fisher’s exact test. These tests were conducted for each examined antibiotic at six

different MIC resistance thresholds (�16, 32, 64, 128, 256 and�512 MIC). For each test, we

created a contingency table reflecting the distribution of each mutation profile in isolates with

lower and greater MIC than each resistance threshold. P values were adjusted based on the

total number of tests (number of mutational profiles), and only associations with a P
value < 3.36 X 10−4 (0.05 / 150) were considered significant to control for multiple testing.

Next, we simulated gains or losses of these mutational events following a continuous-time

Markov chain along a ClonalFrameML v. 1.0–19 phylogeny as implemented in GLOOME v.

01.266 using the default parameters [85, 86]. We defined independent mutational events as

those with a probability greater than 0.95 and to control for population structure, we required

multiple independent mutational events in at least two STRUCTURE-defined groups.

dN/dS calculations

We calculated the expected N/S ratio by simulating all potential mutations in all CDS in the

reference genome and recording all the outcomes of the particular mutational spectrum as

non-synonymous or synonymous amino acid substitutions. For instance, A>T mutations are

18.9 times more likely to lead to a non-synonymous amino acid substitution than a C>T

mutation. The reported dN/dS was the ratio between the observed value of N/S and the

expected value of N/S given each type of mutation. The confidence intervals were estimated

consistent with binomial sampling. This method was first reported by Lieberman et al., in

2014 [87].

In silico mutation impact prediction

To predict the potential impact of non-synonymous SNPs on the biological function of a pro-

tein, we employed PROVEAN v. 1.1.3 [88]. These calculations were performed on the GPC

supercomputer at the SciNet HPC Consortium [89].
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Supporting information

S1 Fig. Sequencing coverage. Whole genome sequencing of 111 isolates of B.multivorans in

the Illumina platform. (A) Distribution of number of bases sequenced per isolate. (B) Distribu-

tion of median read depth per position.

(PDF)

S2 Fig. Genetic diversity over time. (A) Pairwise nucleotide differences between isolates col-

lected from the same collection sample. Incident infection is not included since only one iso-

late was recovered from that time point. (B) Nucleotide differences between each isolate and

the incident infection isolate.

(PDF)

S3 Fig. Additional phylogenetic analysis to support outgroup position and robustness of

the phylogenetic topology. A) Maximum likelihood phylogeny including B.multivorans
ATCC 17616, B.multivorans BAA247, B.multivoransDDS15A-1, and B.multivorans AU1185

from the Burkholderia Genome database [68]. This tree was estimated using the General Time

Reversible (GTR) model in MEGA7 with 500 bootstrap iterations, and it was rooted with B.

mallei ATCC 23344 as the outgroup [81]. B) Maximum likelihood phylogeny rooted using B.

multivorans ATCC 17616 as the outgroup. This tree was estimated under the GTR model in

MEGA7 using 500 bootstrap iterations [81]. C) Maximum parsimony phylogeny rooted with

B.multivorans ATCC 17616 as the outgroup. This tree was estimated using MEGA7 and 500

bootstrap iterations [81]. D) Hierarchical clustering based on the presence and absence of

insertions or deletions among the 111 isolates using Euclidian distances as implemented by the

vegan package in R [93]. This dendrogram was rooted with the incident isolate as the out-

group.

(PDF)

S4 Fig. CF170 isolates in the context of other Burkholderia genus genomes. The sequences

of seven housekeeping genes (atpD, gltB, gyrB, lepA, phaC, recA, and trpB) from B. xenovorans
LB 400, B. oklahomensis C6786, B. thailandensis E264, B.mallei ATCC 23344, B. pseudomallei
K96243, B. vietnamiensis G4, B. ambifaria AMMD, B. cenocepaciaHI2424, B. pyrrociniaDSM

10685, B. dolosa AU 0158, B.multivorans ATCC 17616, B.multivorans 15A-1, B.multivorans
BAA 247, B.multivorans CGD2M, and B.multivorans AU1185 were extracted as defined by

pubMLST [24]. These sequences were aligned with MUSCLE (default parameters) [94], and

the resulting alignment was used to recreate their phylogenetic relationships with a Maximum

Likelihood approach (Bootstrap = 1,000).

(PDF)

S5 Fig. Neighbor-Net phylogeny. This network-based phylogeny was calculated in SplitsTree

v. 4.14.4. Individual strain names at the tips of each branch have been replaced with pie charts

indicating the distribution of dates during which the strains were sampled (indicated by the

circular legend).

(PDF)

S6 Fig. Genetic diversity and selection analysis per group. (A) Pairwise nucleotide differ-

ences between isolates from the same group based on ancestry. (B) dN/dS per group calculated

including all SNPs and using only SNPs observed in multiple time points (MTP). dN/dS and

the respective confidence intervals were calculated as described by Lieberman et al. [87].

(PDF)
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S7 Fig. SNP positions with identical distribution of reference or alternative bases across

the strain collection are grouped into mutational profiles. Here, “0”s and “1”s represent the

reference or alternative base, respectively, at each SNP position for each strain. SNP1 is the

only position where only Strain1 has a base alternative to the reference. Hence, mutational

profile 1, 1-0-0-0, comprises only one SNP. On the other hand, Strain4 is the only strain with a

variant base for positions SNP2 and SNP3. Therefore, mutational profile 2, 0-0-0-1, comprises

SNP2 and SNP3.

(PDF)

S8 Fig. Mutational profiles associated with antibiotic resistance. (A) Maximum Likelihood

phylogeny of 111 B.multivorans isolates was elaborated using RaxML v. 7.0.4 with a GTR

+ gamma model and 1,000 bootstraps [95]. Here, we show all mutation profiles associated

with antibiotic resistance prior to lineage control in black and with lineage control in orange.

(B) resistance to both β-lactams, (C) to amikacin only, (D) to both aminoglycosides, (E) to

both aminoglycosides and to ciprofloxacin, (F) and to ciprofloxacin only. A filled circle repre-

sents a SNP call in the corresponding isolate compared to the reference.

(PDF)

S9 Fig. Resistance levels at which genetic associations are statistically significant. Muta-

tional profiles were tested for association against six levels of antibiotic resistance (<16, <32,

<64,<128, <256 and<512 MIC) to five antibiotics (amikacin, tobramycin, aztreonam, cefta-

zidime and ciprofloxacin). Black boxes show the levels of resistance at which the mutational

profiles were statistically significant including multi-testing correction. Associations to cipro-

floxacin antibiotic resistance are shown up to<128 MIC since no isolate had a MIC of 256 or

greater in relation to that antibiotic.

(PDF)

S10 Fig. Mutations in ampD locus. (A) Distribution of the PROVEAN scores of all identified

non-synonymous substitutions highlighting SNPs in multi-mutated loci (yellow) and in the

ampD gene (red or blue if associated to β -lactam resistance). Red lines represent thresholds

from most specific (highest), to most sensitive (lowest) to determine if a mutation is deleteri-

ous to the function of the gene in which it occurs. (B) Crystal structure of protein product of

AmpD (PDB ID:2Y2B, [96]) in complex with 1,6-anhydro-N-acetylmuramic acid and L-ala-

gamma-D-glu-meso-diaminopimelic acid, which are associated to the cell-wall degradation

pathway. Mutations found in our B.multivorans population are colored in red or blue (muta-

tions associated with β-lactam resistance).

(PDF)

S11 Fig. Phylogenetic analysis of SNPs associated with antibiotic resistance. Maximum like-

lihood phylogenies for SNPs associated with resistance to A) Amikacin and Tobramycin, B)

Ciprofloxacin, C) Aztreonam, and D) Ceftazidime were recreated in MEGA7 using the GTR

model and 500 bootstrap iteration [81]. Each phylogeny was midpoint rooted.

(PDF)

S12 Fig. Population and single isolate sequencing. Sequencing reads from each isolate from

the post-transplant sample were rarified to 1/10th of the number of reads in the population

sequencing experiment; then they were combined so that the number of reads would be the

same for both experiments. Sequencing reads from the population and single isolate experi-

ments were mapped to the same reference as described above. Mutation allele frequencies for

both experiments were calculated using the quality thresholds described by Lieberman et al.
[53]. (A) Grey circles represent mutation allele frequencies in the deep population sequencing
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x = y function and the solid line is the best fit line taking into account all data points (R2 =

0.9928, 95% confidence interval = 0.9918–0.9937). Red circles represent alleles found in the

single isolate sequencing experiment but not in the deep sequencing one. Fixed mutations

between the reference and all the post-transplant isolates are colored blue. (B) Proportion of

false positives in the single isolate sequencing experiment.
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K between one and ten. The estimated ln probability of data plateaus at K = 3 in all chains.
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S14 Fig. Regression analysis of the root-to-tip distance as a function of time of isolation

using the TempEst program [97]. Each circle represents the average root-to-tip distance of

the isolates from the respective sampling time point. The resulting trend shows that the

inferred molecular clock was consistent with the changes seen in our isolates through time (R2

= 0.97, P< 0.0001).
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each phylogeny correspond to the labels in Fig 2E. Each tree was rooted midpoint.
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